
Lab 7 Scheduler

EECS 678 Staff

Primer
● FCFS
● SJF
● PSJF
● PRI
● PPRI
● RR

libscheduler.h
●

●

●

●

●

● job_t

libscheduler.h cont.

● _start_up: Initializes the scheduler
● _new_job: Called when a new job arrives
● _job_finished: Called when a job completes

execution
● _quantum_expired: When the scheme is set to RR,

called when the quantum timer has expired on a core

libscheduler.h cont.

● Useful statistics
– _average_waiting_time:
– _average_turnaround_time:
– _average_response_time:

● _job_t
– Stores information on any job about to be run including statistics
– You may need to use a globals for storing your job queue elements

libscheduler.h cont.

● _clean_up: Free any memory associated with
your scheduler.

● _show_queue: This function may print out any
debugging information you choose. This function
will be called by the simulator after every call the
simulator makes to your scheduler.

How to model the CPU cores
● You might need an additional simple data

structure to model the cores
● Think of cores in terms of what they will be

holding or running
● A status of a core will somehow be related to the

status of the job that is/was being run on that core

Questions?

Programming Files
● src/libpriqueue/libpriqueue.c : You will be using the

libpriqueue.c program that is given to you.
● src/libscheduler/libscheduler.c : This is the primary file you

will be editing
● examples.pl : A perl script of diff runs that tests your program

against the 54 test output files. This file will output
differences between your program and the examples.
– Specifically looks at the last seven lines.

Simulation Flow
1. Check the finished job and schedule the new
job based on the return value of
scheduler_job_finished
– Here scheduling a job will assign the

finished_core_id to the new_job_id
– Note this is just scheduling the job not running it.

Simulation Flow cont

2. Check for newly arrived jobs and calls the
sceduler_new_job function
3. Check if quantum time has expired for RR
policy
4. Execute the scheduled job/jobs at the current
discrete time

Scheduler Details
● The events in a time unit will occur in this order

1 If a job's last unit of execution occurred in the previous
time unit, a scheduler_job_finished() call will be made as
the first call in the new time unit.

2 If a job has finished, the quantum timer for the core will
be reset. (Therefore, scheduler_quantum_expired() will
never be called on a specific core at the same unit that a
job has finished.)

Scheduler Details cont.

3. In RR, if the quantum timer has expired, a
scheduler_quantum_expired() will be called.
4. If any job arrives at the time unit, the
scheduler_new_job() function will be called.
5. Finally, the CPU will execute the active jobs
on each core.

Scheduler Rules
● When multiple cores are available to take on a

job, the core with the lowest id should take the
job

● A job cannot be ran on multiple cores in the
same time unit. However, a job may start on one
core, get preempted, and continue on a different
core.

Scheduler Rules cont.

● In PSJF, if the job has been partially executed,
schedule the job based on its remaining time
(not the full running time).

● In RR, when a new job arrives, it must be placed
at the end of the cycle of jobs. Every existing job
must run some amount of time before the new
job should run.

Scheduler Rulers cont.

● In all schemes except RR, if two or more jobs are tied
(eg: if in PRI multiple jobs have the priority of 1), use
the job with the earliest arrival time. In new_job(), we
provided the assumption that all jobs will have a
unique arrival time. In RR, when a job is unscheduled
as a result of the quantum timer expiring, it must
always be placed at the end of the queue.

Questions?

PPRI Single Core flow
● A job finished in the last time unit, resulting in a

scheduler_job_finished() call to be made to your
scheduler. The scheduler returns that job(id=4) should run.

● In this time unit, a new job also arrived. This results in a
scheduler_new_job() call to be made to your scheduler. If
the new job has greater priority, it will preempt job(j=4),
which was scheduled by scheduler_job_finished(). Now
job(id=5) is scheduled to run.

PPRI Single Core Flow cont.

● Only after all jobs finished and any new job
arrives will the CPU execute the task. In this
example, job(id=4) was never run on the CPU
when it was scheduled by
scheduler_job_finished(). When calculating
response time, you should not consider job as
responded until it runs a CPU cycle.

Compile and Run
● To compile we have provided a Makefile
● To run the simulator use

– ./simulator -c <cores> -s <scheme> <input file>
– ./simulator -c 2 -s fcfs examples/proc1.csv
– See scheme_t for all schemes in libscheduler.h

Testing
● Use the command

– pearl examples.pl
● Three workload models (in examples)

– proc1.csv, proc2.csv, proc3.csv
● Reference output files are given in the examples directory
● Only the last 7 lines of the given output files will be

compared

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	3e5acff6-9117-4ee8-8e0e-da9c80fcf762.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	4a7f1477-08c9-4707-a772-2b8c77825476.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

