
EECS 678 Pthreads: Producer-Consumer 1

Solving the Producer – Consumer 

Problem with PThreads

Michael Jantz

Dr. Prasad Kulkarni

Dr. Douglas Niehaus

Edited by: Ahmet Soyyigit



EECS 678 Pthreads: Producer-Consumer 2

Introduction

●If you have not done the PThreads Intro lab, you should do that 

first before attempting to this one.

●Go ahead and make and tag the starter code for this lab:

–tar xvzf eecs678-pthreads_pc-lab.tar.gz;

–cd pthreads_pc; make; ctags -R

●Helpful man pages for today:

–sem_overview, sem_wait, sem_post



EECS 678 Pthreads: Producer-Consumer 3

The Producer - Consumer Problem
●The producer – consumer is a problem for cooperating processes or threads which 

share a common buffer for communication. Basically, a producer produces data and 

puts it in a common buffer that is consumed by a consumer. There can be multiple 

producers and consumers sharing the same common buffer. 

●The solution to producer-consumer problem should allow us:

–To run producer and consumer threads concurrently in sync. Therefore, it resolves 
synchronization problems that arise from race conditions. 

–To block a consumer when it tries to consume data from an empty buffer. This consumer should 
be resumed when the buffer becomes non-empty.

–To block a producer when it tries to put data to a buffer that is full. This producer is resumed 
when the buffer becomes non-full.

–As a result, producer(s) pass data to consumer(s) via the common buffer.

• There are many examples of this problem in “real world” applications.

• e.g., a build system may run multiple processes concurrently. The compiler process will produce 
assembly code to be read by the assembler process.



EECS 678 Pthreads: Producer-Consumer 4

Lab file

●In producer_consumer.c, there is an instance of the Producer-

Consumer problem.

●Producer and consumer threads are created in the main 

function. They share a bounded length FIFO queue whose type 

is queue (a struct type).

●Each producer places an integer into the queue every iteration 

until WORK_MAX integers are placed in total. They notify 

consumers whenever an item is placed.

●Each consumer remove an integer from the queue every 

iteration until WORK_MAX iterations are removed in total. They 

notify producers whenever an item is removed.



EECS 678 Pthreads: Producer-Consumer 5

The Proposed Solution

●In order to solve the problem, the producer_consumer.c as it was distributed 

proposes the following “solution”:

void *producer (void *q)
{

fifo = (queue *)q;
while (1) {
do_work(PRODUCER_CPU, PRODUCER_BLOCK);
while (fifo->full && *total_produced != WORK_MAX) {

printf ("prod %d:\t FULL.\n", my_tid);
}
if (*total_produced == WORK_MAX) {

break;
}
item_produced = (*total_produced)++;
queueAdd (fifo, item_produced);

printf("prod %d:\t %d.\n", my_tid, item_produced);
}
return(NULL);

}

void *consumer (void *q)
{

fifo = (queue *)q;
while (1) {

while (fifo->empty && *total_consumed != WORK_MAX) {
printf ("con %d:\t EMPTY.\n", my_tid);

}
if (*total_consumed == WORK_MAX) {
break;

}
queueRemove (fifo, &item_consumed);
(*total_consumed)++;
do_work(CONSUMER_CPU,CONSUMER_CPU);
printf ("con %d:\t %d.\n", my_tid, item_consumed);

}
return(NULL);

}

●Essentially, when the queue is empty the consumer simply spins (as it has nothing to 

do), and when the queue is full the producer will spin (as it has nothing to do).



EECS 678 Pthreads: Producer-Consumer 6

Problems With the Solution

●One of the problems with this solution is that it contains a race 

condition. Suppose the scheduler created the following 

interleaving:
Producer Consumer

Add last items to the queue.
Set queue->empty = 0
i == WORK_MAX, producer exits.

Remove an item from the queue.
A check to see if the queue is empty shows that it is.

Set queue->empty = 1.
Set queue->full = 0
Start spinning.



EECS 678 Pthreads: Producer-Consumer 7

Imposing Mutual Exclusion
●The basic problem with this solution is that the critical section of the code where threads access 

the shared total_produced, total_consumed, and queue variables, are not executed atomically

–For example, producer thread can preempt the consumer thread after the consumer has checked 
if the list is empty but before it has set the fifo->empty variable (and vice versa).

●A solution: we can use a single mutex to protect everything. For producer, it would be like this:

while (1) {

do_work(PRODUCER_CPU, PRODUCER_BLOCK);

pthread_mutex_lock(mutex);

while (buffer it full){

pthread_mutex_unlock(mutex);

sleep for some time before trying again

pthread_mutex_lock(mutex);

}

produce and put item into the queue

pthread_mutex_unlock(mutex);

}

Although this solution ensures mutual exclusion, the problem of spinning still 

remains. We need a more CPU friendly solution instead of busy waiting.



EECS 678 Pthreads: Producer-Consumer 8

Busy Waiting Problem
●Let’s go back and think about the initial solution.

●Even if the thread is lucky enough to avoid busy waiting, we are still wasting a 

lot of cycles by forcing each thread to spin when the conditions required for 

them to continue are not met.

–Many “FULL” and “EMPTY messages can be printed

–Try 'bash> grep “EMPTY” narrative1.raw | wc’ after execution.

●There were 43,000 in our example run

●You can comment out the busy-wait printfs to see behavior differently

●Consider how many wasted cycles are executed. And this is with a blocking 

print statement!

–Also there is still a race wrt the empty and full flags



EECS 678 Pthreads: Producer-Consumer 9

Solution
● The problem of spinning can be solved by using condition variables or 

semaphores. We will focus on the semaphore solution in this lab.

●Semaphores are simply unsigned integers which are increased and decreased 

atomically.

●A thread can decrease a semaphore with the sem_wait function, and increase 

it with the sem_post.

●When a thread wants to decrease a semaphore that is zero at the moment, the 

sem_wait function will cause this thread to be end up being blocked by the OS. 

This blocked thread will be put in a queue of blocked threads waiting for the 

same semaphore. Each semaphore has its own waiting queue.

●When some other thread increase the same semaphore with sem_post, the 

thread at the head of queue will become ready to run. When it starts running, it 

will decrease the semaphore and return from the sem_wait call.



EECS 678 Pthreads: Producer-Consumer 10

Solution
● As semaphores can be any unsigned integer, we can use them to represent 

the number of empty slots and the number of items inside the queue.

●This way, we will achieve our two important goals:

● Getting the status of the buffer atomically

● Avoiding busy waiting if the condition for producing or consuming is not 
yet satisfied

●Apart from these, accessing to queue data also needs to be done atomically. 

This is why we still need the mutex.

●Therefore, we should protect shared data operations with mutex while avoiding 

busy waiting with semaphores.



EECS 678 Pthreads: Producer-Consumer 11

Library Calls
● int sem_init(sem_t *sem, int pshared, unsigned int value);

● Used to initialize a semaphore object. For our case, pshared will be 0 as we are not going to share the 
semaphore between processes. The value can be used to represent the amount of emptiness or 
fullness of a buffer.

● int sem_wait(sem_t *sem);

● This function will decrease the semaphore if it is higher than zero, and the execution of the thread will 
continue. If the semaphore is zero, calling thread will be blocked until it is put to ready queue of the 
scheduler by the OS. Please look at the slide 9 for explanation.

● int sem_post(sem_t *sem);

● This function will increase the semaphore and the OS will wake up a thread waiting for this 
semaphore, if there is any.

A side info: As you might have noticed, a mutex is a semaphore which can be either one or zero.



EECS 678 Pthreads: Producer-Consumer 12

Modifying producer_consumer.c

●Modify producer_consumer.c to make use of the semaphore 

and mutex library calls to solve the problem.

●When you are through, the producer and consumer should not 

spin until the condition they are waiting on is met, but should 

actually block their own execution. They should be waken up by 

the OS when that condition is satisfied.

●As a hint, the starter code has initialized all the mutex and 

semaphores you should need EXCEPT the initial value of the 

semaphores. One of your task is to determine these values.



EECS 678 Pthreads: Producer-Consumer 13

Output
●When you are through, the output of the printf statements will provide information by 

which you can verify the semantics specified on the previous slide are present

–Makefile targets: test1, test2, test3 and test4 run with various numbers of producers 
and consumers

–NarrativeX.raw gives the raw output of testX

–NarrativeX.sorted gives output for each thread separately

●Raw output shows how execution of threads are interleaved

●Sorted output shows the sequence of actions by each thread

●The amount of working and blocking time associated with each item can affect how 

threads behave, and thus how their execution is interleaved

–Change the settings and see how behavior changes, if it does

●Also, run a given test multiple times with the same setting and look for differences in 

behavior due to random chance and changing system conditions



EECS 678 Pthreads: Producer-Consumer 14

Lab Assignment

●Your final task for this lab is to experiment with 

producer_consumer using different numbers of threads and 

different work settings

●If you have modified the producer and consumer routines to use 

the mutex and condition variables correctly, the program should 

work correctly for arbitrary numbers of threads

●How will you ensure the producers produce the correct number 

of items(also same for consumers)? 



EECS 678 Pthreads: Producer-Consumer 15

Testing
●producer_consumer takes as its arguments the number of 

producer and consumer threads it will use.

●Test your program for different combinations of producers and 

consumers: several producers and 1 consumer, 1 producer and 

several consumers, several producers and several consumers.

–The testX makefile targets are a guide, but try other things as 
well

–You will have to create your own raw and sorted files for new 
tests

●Examine the raw and sorted output for a given test and see 

what you can deduce about behavior



EECS 678 Pthreads: Producer-Consumer 16

Conclusions
●Producer-Consumer is a simple canonical problem which arises 

in a wide range of situations

●Yet, as simple as it is, there are a number of interesting features 

and a wide range of behavior

●One important part of this assignment is to look for small 

inconsistencies or other features of a behavior narrative that 

indicate unexpected scenarios

●Another important aspect is to note how behavior of different 

runs can vary under the same settings.

–Concurrency is subject to a lot of random variation


