EECS6/8

The Dining Philosophers
with Pthreads

Dr. Douglas Niehaus
Michael Jantz
Dr. Prasad Kulkarni

Dining Philosophers

Introduction

.The Dining Philosophers canonical problem illustrates a number of
Interesting points about concurrency control that recur in various
situations

.Multiple threads using multiple resources

.Different sets of resources used by different threads

. Threads spend different amounts of time using resources and between
Intervals of resource use

.Deadlock can occur because of a set of interactions among different
threads and resources

First proposed by Djikstra (1965) as a problem of coordinating access
by five computers to five tape drives

.Retold in its more amusing current form by Hoare
.Few real-world problems map directly onto its structure

.But many share characteristics: multiple threads, multiple resources,
varied patterns of resource use

EECS678 Dining Philosophers

Dining Philosophers

A set of philosophers spend their lives alternating between
thinking and eating

.Philosophers sit around a table with a shared bowl of food
.To eat, philosophers must hold two chopsticks
.Chopsticks are placed on the table between philosophers
.Each philosopher this has a right and left chopstick

.Each philosopher uses a different set of resources
.Chopsticks can only be acquired one at a time

-When a philosopher becomes hungry, she tries to pick up the
left chopstick and then the right

If a chopstick is missing, the philosopher waits for it to
appear

A hungry philosopher holding two chopsticks eats until no
Iongger hungry, puts down her chogsticks and thinks

EECS6 Dining Philosophers

Dining Philosphers

.N philosophers, N forks

.Food has unrestricted
concurrent access

Forks are exclusive use
resources

.Each fork plays a different
role for its philosophers (L/R)

.Each fork used by a different
set of philosophers

.Deadlock appears quite
unlikely to happen
.Happens “quickly” In
practice

EECS678 Dining Philosophers 4

Pthreads Implementation

.Starter code implements the “classic” dining philosophers
problem with its vulnerability to deadlock

JAssumes familiarity with Pthreads concepts in previous labs
.Concurrent execution of Pthreads

.Mutex used for mutual exclusion

.Condition variable use for signal-wait interaction

.Starter code also contains some components labeled
ASYMMETRIC and WAITER which are associated with two
different approaches to a solution you will work on.

.Go ahead and unpack the starter code and run the current
Implementation

bash> tar zxvf eecs678-pthreads_dp-lab.tar.gz

EECS678 Dining Philosophers

Pthreads Implementation

.Code Is a fairly straightforward implementation decomposed
Into a number of components

.dining_philosophers.c

.Code begins with includes and defined constants
.Constants are used to control many aspects of behavior
.Next, a definition of the philosopher structure

.Note the prog and prog_total fields which track the number
of times a philosopher has gone through the think-eat cycle
during an accounting period and during program execution,
respectively

.Next, we have some global variables:

.Diners: array of philosopher structures

.Stop: global stop flag

.chopstick: array of mutexes representing the chopsticks

EECS GYEP Dining Philosophers

Pthreads Implementation

.Global continued

waiter: mutex used to represent the waiter the waiter-based
solution

.available_chopsticks: array of integers used to represent
chopstick availability in the waiter solution

.Next Is a set of utility routines used In various solutions

.Return pointers to philosopher to left and right of argument,
chopstick to left and right, and pointer to available flag of left
and right chopstick of a given philosopher

.think_one _thought() and eat_one_mouthful() routines
.Used in dp_thread() routine to represent activity

.dp_thread() routine is code executed by each philosopher
thread which implements the think-eat cycle until told to
stop, and does accounting on how many cycles completed

EECS678 Dining Philosophers

Pthreads Implementation

.set_table() routine initializes data structures representing chopsticks,
Initializes the philosopher structures and creates the philosopher threads

.print_progress() prints progress statistics for each philosopher, and
zeroes the prog field so progress during each accounting period is
counted as well as the total

.Five philosophers per line and a blank line between statistics for each
accounting period

.main() calls set_table(), prints out a header, and falls into the
accounting and deadlock detection loop

.Root thread zeroes philosopher period progress, then sleeps for
ACCOUNTING_PERIOD seconds

.Checks to see If any progress made while it slept
.Infers deadlock If not, and sets Stop
.Prints statistics in any case

EECS678 Dining Philosophers

Pthreads Implementation

.Run the existing code
bash> cd pthreads dp; make dp_test

-Your output should be similar, but remember thread behavior
and deadlock are affected by many random factors

.Context switches, other load on system, interrupts, etc

plato:starter_code$ make dp_test
gcc -g dining_philosophers.c -Ipthread -Im -o dp
Jdp

Dining Philosophers Update every 5 seconds

p0= 1012/1056 pl= 11 p2= 492/492 p3= 913/913 p4= 0/0
pO0= 0/1056 pl= 0/1 p2= 0/492 p3= 0/913 p4= 0/0

Deadlock Detected
EECS678 Dining Philosophers

Asymmetric Solution

.Example output shows that deadlock occurred during the first
accounting period, after threads had performed a variable
number of think-eat cycles

LP1 =123/456 entry indicates that P1 executed 123 think-
eat cycles In the current accounting period and has 456 total

.Numbers may not be completely consistent as there is no
concurrency control between main and philosopher threads

.Try running the test several times and see that behavior varies

.Deadlock occurs because each philosopher has picked up the
left fork before any have pick up the right

.Happens much more quickly than most people would expect

JAsymmetric solution is to have the even numbered

philosophers pick up in left-right order, while odd-numbered
pick up in right-left order

EECS678 Dining Philosophers 10

Asymmetric Solution

.Make a copy of dining_philosophers.c into dp_asymmetric.c and update
the Makefile appropriately

.Make the necessary change to dp_thread where the string
ASYMMETRIC appears in the comment: test me->id for even or odd
and alter mutex lock order accordingly

bash> make dp_asymmetric_test

Af your implementation is correct, then the program should run for 10 5-
second cycles and complete without deadlock. It should print the first
digit of your KUID if an even philosopher is eating.

.Note how many think-eat cycles each philosopher makes in each
accounting cycle and total

.This will vary with the platform (cycle4, 1005D-*, etc)
.Was several hundred thousand on development machine
.Note that progress by each philosopher is roughly equal

.Try running it a few more times and see how much behavior varies due
to random chance and system context

EECS678 Dining Philosophers 11

Asymmetric Solution

All philosophers still randomly

compete for their left and

right chopsticks, holding their first and waiting for the second

[As long as thinking and eating

periods vary randomly and

other factors make when a philosopher tries to pick up their

chopsticks vary randomly, then

progress should be roughly

equal and no philosopher should starve

.However, If a set of philosophers ever began to share the
same “rhythm” then one philosopher might be at a

disadvantage

EECS678 Dining Philosophers

12

Waliter Solution

.Now consider a slightly more complex solution using a Pthread
condition variable approach

.Mutex waliter represents a waiter in the cafe that will “give” the
chopsticks to a philosopher as a pair

.Note that this will constrain concurrency more than the asymmetric

solution as this creates a region where only one philosopher at a time
can obtain its chopsticks

.Copy dining_philosophers.c into dp_waiter.c
.Look for “WAITER SOLUTION” in the code

.Relevant changes are in dp_thread() code where philosophers obtain
and give back their chopsticks

. This solution does not need the chopstick array of mutexes

.Use the array of integers available chopsticks instead, whose integrity
will be protected by the waliter mutex, and condition variable
programming pattern

EECS678 Dining Philosophers

Waliter Solution

.Get-chopsticks section pthread_mutex_lock(&waiter):
ensures that testing
my_chopsticks_free and
mark_my_chopsticks_free

while ('(my_chopsticks free)) {
1pthread_cond_wait(&(me->can_eat), &waiter);

set of « operatlons are }
ATOMIC using waiter mark_my_chopsticks_taken;
; ; pthread mutex_unlock(&waliter);
.Free-chopsticks section uses
waiter to ensures the Eat;

mark_my chopsticks free |
and Signal sets of operations ~ Prhread_mutex_lock(&waiter)
are done ATOMICALLY

.Consider types and pointers

Carer”y as the helper //Signal those who might care they became free
rOUtlnes return p0|nterS (0] 2pthread_cond_signal(...)

avallable flags and

P hil 0S0p hers pthread_mutex_unlock(&waiter);
EECS 678 Dining Philosophers 14

Ipthread_cond_wait - https://linux.die.net/man/3/pthread_cond_wait 2pthread_cond_signal - https://linux.die.net/man/3/pthread_cond_signal

mark_my_chopstick_free;

https://linux.die.net/man/3/pthread_cond_wait
https://linux.die.net/man/3/pthread_cond_signal

Waliter Solution

-When your solution is complete and correct, your solution
should produce output similar to the asymmetric solution

.Runs through 10 cycles and completes without deadlock and
orints the first letter of your KUID if a philosopher's id Is
even.

.Note, however, that the number of think-eat cycles Is
significantly lower

Why?

-Another point of interest is the while loop testing the
condition and calling pthread cond_wait()

-Why does this need to be a loop

.Hint: Consider possible events between when the decision to
send the signal iIs made and when the signal is received

EECS678 Dining Philosophers 15

Waliter Solution

.Does this solution prevent starvation?
.Hint: NO !
.Try to extend your solution to count the number of times a

philosopher iIs awakened and both chopsticks are not free, so
It must wait again

.Experiment with tests In the chopstick freeing area that send
a signal to a philosopher only when both its chopsticks are

free

.You should find that a small but significant percentage of the
time a chopstick iIs taken between when the signal Is sent and
when the receiving philosopher tries to get its chopsticks

.Consider what would happen in these retry cases If the while
loop was an if-then instead

EECS678 Dining Philosophers 16

Conclusions

.The dining philosophers Is a simple problem with a surprising
number of subtle aspects

.Deadlock seems extremely unlikely, yet happens quite quickly

Solutions are not all that difficult, but have different
Implications

.Plausible but incorrect solutions also easy to construct
.Shows that knowing if a solution is correct is also hard

.Neither of these solutions to preventing deadlock prevent
starvation

.Consider how to implement the Waiter solution with a Monitor
representing the waiter

.-Waiter can maintain a queue of requests, ensuring all
philosophers eventually eat

EECS678 Dining Philosophers 17

	Slide 1: The Dining Philosophers with Pthreads
	Slide 2: Introduction
	Slide 3: Dining Philosophers
	Slide 4: Dining Philosphers
	Slide 5: Pthreads Implementation
	Slide 6: Pthreads Implementation
	Slide 7: Pthreads Implementation
	Slide 8: Pthreads Implementation
	Slide 9: Pthreads Implementation
	Slide 10: Asymmetric Solution
	Slide 11: Asymmetric Solution
	Slide 12: Asymmetric Solution
	Slide 13: Waiter Solution
	Slide 14: Waiter Solution
	Slide 15: Waiter Solution
	Slide 16: Waiter Solution
	Slide 17: Conclusions

