
The Dining Philosophers

with Pthreads

Dr. Douglas Niehaus
Michael Jantz

Dr. Prasad Kulkarni

EECS 678 Dining Philosophers 1

Introduction

EECS 678 Dining Philosophers 2

●The Dining Philosophers canonical problem illustrates a number of
interesting points about concurrency control that recur in various
situations

●Multiple threads using multiple resources

●Different sets of resources used by different threads

●Threads spend different amounts of time using resources and between
intervals of resource use

●Deadlock can occur because of a set of interactions among different
threads and resources

●First proposed by Djikstra (1965) as a problem of coordinating access
by five computers to five tape drives

●Retold in its more amusing current form by Hoare

●Few real-world problems map directly onto its structure

●But many share characteristics: multiple threads, multiple resources,
varied patterns of resource use

Dining Philosophers

EECS 678 Dining Philosophers 3

●A set of philosophers spend their lives alternating between
thinking and eating

●Philosophers sit around a table with a shared bowl of food

●To eat, philosophers must hold two chopsticks

●Chopsticks are placed on the table between philosophers

●Each philosopher this has a right and left chopstick

●Each philosopher uses a different set of resources

●Chopsticks can only be acquired one at a time

●When a philosopher becomes hungry, she tries to pick up the
left chopstick and then the right

●If a chopstick is missing, the philosopher waits for it to
appear

●A hungry philosopher holding two chopsticks eats until no
longer hungry, puts down her chopsticks and thinks

Dining Philosphers

●N philosophers, N forks

●Food has unrestricted
concurrent access

●Forks are exclusive use
resources

●Each fork plays a different
role for its philosophers (L/R)

●Each fork used by a different
set of philosophers

●Deadlock appears quite
unlikely to happen

●Happens “quickly” in
practice

EECS 678 Dining Philosophers 4

Pthreads Implementation

EECS 678 Dining Philosophers 5

●Starter code implements the “classic” dining philosophers
problem with its vulnerability to deadlock

●Assumes familiarity with Pthreads concepts in previous labs

●Concurrent execution of Pthreads

●Mutex used for mutual exclusion

●Condition variable use for signal-wait interaction

●Starter code also contains some components labeled
ASYMMETRIC and WAITER which are associated with two
different approaches to a solution you will work on.

●Go ahead and unpack the starter code and run the current
implementation

bash> tar zxvf eecs678-pthreads_dp-lab.tar.gz

Pthreads Implementation

EECS 678 Dining Philosophers 6

●Code is a fairly straightforward implementation decomposed
into a number of components

●dining_philosophers.c

●Code begins with includes and defined constants

●Constants are used to control many aspects of behavior

●Next, a definition of the philosopher structure

●Note the prog and prog_total fields which track the number
of times a philosopher has gone through the think-eat cycle
during an accounting period and during program execution,
respectively

●Next, we have some global variables:

●Diners: array of philosopher structures

●Stop: global stop flag

●chopstick: array of mutexes representing the chopsticks

Pthreads Implementation

EECS 678 Dining Philosophers 7

●Global continued

●waiter: mutex used to represent the waiter the waiter-based
solution

●available_chopsticks: array of integers used to represent
chopstick availability in the waiter solution

●Next is a set of utility routines used in various solutions

●Return pointers to philosopher to left and right of argument,
chopstick to left and right, and pointer to available flag of left
and right chopstick of a given philosopher

●think_one_thought() and eat_one_mouthful() routines

●Used in dp_thread() routine to represent activity

●dp_thread() routine is code executed by each philosopher
thread which implements the think-eat cycle until told to
stop, and does accounting on how many cycles completed

Pthreads Implementation

EECS 678 Dining Philosophers 8

●set_table() routine initializes data structures representing chopsticks,
initializes the philosopher structures and creates the philosopher threads

●print_progress() prints progress statistics for each philosopher, and
zeroes the prog field so progress during each accounting period is
counted as well as the total

●Five philosophers per line and a blank line between statistics for each
accounting period

●main() calls set_table(), prints out a header, and falls into the
accounting and deadlock detection loop

●Root thread zeroes philosopher period progress, then sleeps for
ACCOUNTING_PERIOD seconds

●Checks to see if any progress made while it slept

●Infers deadlock if not, and sets Stop

●Prints statistics in any case

Pthreads Implementation
●Run the existing code

bash> cd pthreads_dp; make dp_test

●Your output should be similar, but remember thread behavior
and deadlock are affected by many random factors

●Context switches, other load on system, interrupts, etc
plato:starter_code$ make dp_test

gcc -g dining_philosophers.c -lpthread -lm -o dp

./dp

Dining Philosophers Update every 5 seconds

p0= 1012/1056 p1= 1/1 p2= 492/492 p3= 913/913 p4= 0/0

p0= 0/1056 p1= 0/1 p2= 0/492 p3= 0/913 p4= 0/0

EECS 678 Dining Philosophers 9
Deadlock Detected

Asymmetric Solution

EECS 678 Dining Philosophers 10

●Example output shows that deadlock occurred during the first
accounting period, after threads had performed a variable
number of think-eat cycles

●“P1 = 123/456” entry indicates that P1 executed 123 think-
eat cycles in the current accounting period and has 456 total

●Numbers may not be completely consistent as there is no
concurrency control between main and philosopher threads

●Try running the test several times and see that behavior varies

●Deadlock occurs because each philosopher has picked up the
left fork before any have pick up the right

●Happens much more quickly than most people would expect

●Asymmetric solution is to have the even numbered
philosophers pick up in left-right order, while odd-numbered
pick up in right-left order

Asymmetric Solution

EECS 678 Dining Philosophers 11

●Make a copy of dining_philosophers.c into dp_asymmetric.c and update
the Makefile appropriately

●Make the necessary change to dp_thread where the string
ASYMMETRIC appears in the comment: test me->id for even or odd
and alter mutex lock order accordingly

bash> make dp_asymmetric_test

●If your implementation is correct, then the program should run for 10 5-
second cycles and complete without deadlock. It should print the first
digit of your KUID if an even philosopher is eating.

●Note how many think-eat cycles each philosopher makes in each
accounting cycle and total

●This will vary with the platform (cycle4, 1005D-*, etc)

●Was several hundred thousand on development machine

●Note that progress by each philosopher is roughly equal

●Try running it a few more times and see how much behavior varies due
to random chance and system context

Asymmetric Solution

EECS 678 Dining Philosophers 12

●All philosophers still randomly compete for their left and
right chopsticks, holding their first and waiting for the second

●As long as thinking and eating periods vary randomly and
other factors make when a philosopher tries to pick up their
chopsticks vary randomly, then progress should be roughly
equal and no philosopher should starve

●However, if a set of philosophers ever began to share the
same “rhythm” then one philosopher might be at a
disadvantage

Waiter Solution

EECS 678 Dining Philosophers 13

●Now consider a slightly more complex solution using a Pthread
condition variable approach

●Mutex waiter represents a waiter in the cafe that will “give” the
chopsticks to a philosopher as a pair

●Note that this will constrain concurrency more than the asymmetric
solution as this creates a region where only one philosopher at a time
can obtain its chopsticks

●Copy dining_philosophers.c into dp_waiter.c

●Look for “WAITER SOLUTION” in the code

●Relevant changes are in dp_thread() code where philosophers obtain
and give back their chopsticks

●This solution does not need the chopstick array of mutexes

●Use the array of integers available_chopsticks instead, whose integrity
will be protected by the waiter mutex, and condition variable
programming pattern

EECS 678 Dining Philosophers 14

Waiter Solution
●Get-chopsticks section
ensures that testing
my_chopsticks_free and
mark_my_chopsticks_free
set of operations are
ATOMIC using waiter

●Free-chopsticks section uses
waiter to ensures the
mark_my_chopsticks_free
and Signal sets of operations
are done ATOMICALLY

●Consider types and pointers
carefully as the helper
routines return pointers to
available flags and
philosophers

pthread_mutex_lock(&waiter);

while (!(my_chopsticks_free)) {

1pthread_cond_wait(&(me->can_eat), &waiter);

}

mark_my_chopsticks_taken;

pthread_mutex_unlock(&waiter);

Eat;

pthread_mutex_lock(&waiter);

mark_my_chopstick_free;

//Signal those who might care they became free

2pthread_cond_signal(...)

...

pthread_mutex_unlock(&waiter);

1pthread_cond_wait - https://linux.die.net/man/3/pthread_cond_wait 2pthread_cond_signal - https://linux.die.net/man/3/pthread_cond_signal

https://linux.die.net/man/3/pthread_cond_wait
https://linux.die.net/man/3/pthread_cond_signal

Waiter Solution

EECS 678 Dining Philosophers 15

●When your solution is complete and correct, your solution
should produce output similar to the asymmetric solution

●Runs through 10 cycles and completes without deadlock and

prints the first letter of your KUID if a philosopher's id is

even.

●Note, however, that the number of think-eat cycles is
significantly lower

●Why?

●Another point of interest is the while loop testing the
condition and calling pthread_cond_wait()

●Why does this need to be a loop

●Hint: Consider possible events between when the decision to
send the signal is made and when the signal is received

Waiter Solution

EECS 678 Dining Philosophers 16

●Does this solution prevent starvation?

●Hint: NO !!!

●Try to extend your solution to count the number of times a
philosopher is awakened and both chopsticks are not free, so
it must wait again

●Experiment with tests in the chopstick freeing area that send
a signal to a philosopher only when both its chopsticks are
free

●You should find that a small but significant percentage of the
time a chopstick is taken between when the signal is sent and
when the receiving philosopher tries to get its chopsticks
●Consider what would happen in these retry cases if the while
loop was an if-then instead

Conclusions

EECS 678 Dining Philosophers 17

●The dining philosophers is a simple problem with a surprising
number of subtle aspects

●Deadlock seems extremely unlikely, yet happens quite quickly

●Solutions are not all that difficult, but have different
implications

●Plausible but incorrect solutions also easy to construct

●Shows that knowing if a solution is correct is also hard

●Neither of these solutions to preventing deadlock prevent
starvation

●Consider how to implement the Waiter solution with a Monitor
representing the waiter

●Waiter can maintain a queue of requests, ensuring all
philosophers eventually eat

	Slide 1: The Dining Philosophers with Pthreads
	Slide 2: Introduction
	Slide 3: Dining Philosophers
	Slide 4: Dining Philosphers
	Slide 5: Pthreads Implementation
	Slide 6: Pthreads Implementation
	Slide 7: Pthreads Implementation
	Slide 8: Pthreads Implementation
	Slide 9: Pthreads Implementation
	Slide 10: Asymmetric Solution
	Slide 11: Asymmetric Solution
	Slide 12: Asymmetric Solution
	Slide 13: Waiter Solution
	Slide 14: Waiter Solution
	Slide 15: Waiter Solution
	Slide 16: Waiter Solution
	Slide 17: Conclusions

