
The Shell, Processes and
Basic Inter Process Communication (IPC)

with System Calls

Michael Jantz

Dr. Prasad Kulkarni

Ishrak Hayet

The Shell

• Shell is a program that lets users communicate with the Operating
System

• Typically, in a shell, users are given access to a command line interface
(CLI) through which users can input textual commands

• The shell accepts the command, interprets it and executes it
• The command will be an executable program that either comes with the OS

or is created by the user

• The shell usually looks for the program from the entries in the system’s PATH
environment variable (you can check using: ‘echo $PATH’ on your terminal)

• If the program is not in any of the directories of the PATH variable, then we
have to input the command using its full path
• If the command is in the current directory, we can use ‘./<command>’

EECS 678 2

Processes

• Processes are nothing but programs that are being executed

• Processes are created in the following ways

• When we execute a program, a process is created

• A child process can be created from within another process using fork()
system call (more on this later)

EECS 678 3

IPC at a Glance

• Operating Systems provide mechanisms for processes to cooperate
and communicate with one another through Inter Process
Communication (IPC)

• Pipes are one such mechanism to provide unidirectional
communication channel between two processes

• We will work with pipes in today’s lab

EECS 678 4

A Few System Calls

• System calls are special functions that are invoked through the kernel space

• We will use the following system calls for today’s lab

• fork - used to create child processes
• waitpid - used when a parent process blocks itself until a specific child

process exits

• pipe - used to create a pipe for IPC
• dup2 - used to duplicate a file descriptor into another file descriptor

• execl - used to execute a specific program with arguments just like
we would do on a shell

• read - used to read from a file
• write - used to write to a file

EECS 678 5

fork

• fork is a system call that creates a child process
• Declaration: pid_t fork(void);1

• Invocation: pid_val = fork();

• The process that calls fork is the parent process

• The child process is created by duplicating the parent process

• Starting from the line after the fork call, all the remaining lines of
code are executed for both the parent and child processes

1) https://www.man7.org/linux/man-pages/man2/fork.2.html EECS 678 6

https://www.man7.org/linux/man-pages/man2/fork.2.html

fork (continued)

• Since the remaining lines of code are executed for both parent and child
processes, we can use the return value from fork to identify the code
sections that we want to run for either the parent or child process

• Return value (pid_val == 0): child process section
• When the child process looks at the pid_val, it finds 0

• Return value (pid_val > 0): parent process section
• When the parent process looks at the pid_val, it finds the unique process id of the child

process (useful to keep track of the child processes)
• Return value (pid_val == -1): error

• When an error occurs, the errno1 value is set and can be used by perror2 to print error
message

• The parent and child processes run in separate memory spaces
• The child inherits “copies” of parent’s attributes (e.g. file descriptors)

1) https://man7.org/linux/man-pages/man3/errno.3.html
2) https://linux.die.net/man/3/perror

EECS 678 7

https://man7.org/linux/man-pages/man3/errno.3.html
https://linux.die.net/man/3/perror

waitpid

• waitpid is a system call that lets a parent process wait for the completion of
a child process
• Declaration: pid_t waitpid(pid_t pid, int *status, int options);1

• Invocation (for this lab): waitpid(pid_val, NULL, 0);

• Waiting for the child process prevents “orphan” and “zombie” processes
(both waste system resources)
• Orphan process:

• When parent process finishes execution before child, the child becomes orphan process
• Orphan process is adopted by the init or system daemon process

• Zombie process:
• When child process finishes execution before parent, the child becomes zombie process
• If the parent process “waits” to read the exit status of the child, the child process is reaped

from the process entry table and prevents the child from remaining a zombie process
• The waitpid system call lets a parent process read the exit status of finished child processes

and reaps off zombie processes

1) https://linux.die.net/man/2/waitpid EECS 678 8

https://linux.die.net/man/2/waitpid

File Descriptors

• A file descriptor is a unique, non-negative integer used to identify an open
file

• File descriptors can be used with open, close, read and write system calls

• Some special file descriptors:
• 1STDIN_FILENO – a file descriptor for the standard input (keyboard)
• 2STDOUT_FILENO – a file descriptor for the standard output (computer display)
• Pipe file descriptors – two file descriptors for a pipe’s read and write end (more on

these later)

• Inside the PCB of a process, there is a file descriptor table which:
• Keeps a mapping of file descriptors (used by the process) to actual files on the

system
• Is inherited by the children of the process

1, 2) https://stackoverflow.com/questions/12902627/the-difference-between-stdout-and-stdout-fileno/12902707#12902707 EECS 678 9

https://stackoverflow.com/questions/12902627/the-difference-between-stdout-and-stdout-fileno/12902707#12902707

pipe

• Pipe is a “unidirectional” data channel that can be used by a process to
communicate with other processes
• Declaration: int pipe(int pipefd[2]);1

• Invocation:
int fd[2];
pipe(fd);

• fd[0] is the read end of the pipe

• fd[1] is the write end of the pipe

• Close pipe ends when they are no longer needed (very important):
close(fd[0]);
close(fd[1]);

1) https://man7.org/linux/man-pages/man2/pipe.2.html EECS 678 10

https://man7.org/linux/man-pages/man2/pipe.2.html

dup2

• dup2 is a system call that copies one file descriptor into another
• Declaration: int dup2(int oldfd, int newfd);1

• Invocation: dup2(fd_one, fd_two);

• Can be used for I/O redirection
• Input redirection:

• dup2(pipe_read_end, STDIN_FILENO);

• Input of the process is taken from the pipe

• Output redirection:
• dup2(pipe_write_end, STDOUT_FILENO);

• Output of the process is sent to the pipe

1) https://man7.org/linux/man-pages/man2/dup.2.html EECS 678 11

https://man7.org/linux/man-pages/man2/dup.2.html

exec

• exec represents a group of system calls that can be used to execute
external programs just like we would from a terminal

• We will use execl for today’s lab
• Declaration: int execl(const char* pathname, const char* arg, …,

(char*)NULL);1

• Invocation: execl(program_path, variable_number_of_args, (char*)NULL);

• exec system calls replace the calling process’s image by a new image

• So, lines of code after a successful exec call inside a “specific process”
will not be executed

1) https://man7.org/linux/man-pages/man3/exec.3.html EECS 678 12

https://man7.org/linux/man-pages/man3/exec.3.html

read

• read is a system call that is used to read from a file descriptor
• Declaration: ssize_t read(int fd, void *buf, size_t count);1

• Invocation:
char buf[n];

int numOfBytesRead = read(fd, buf, sizeof(buf));

• Reading from pipes:
• Reading from a pipe will block the caller and read as long as any process has

open write descriptors for that pipe

• If all processes close the write end of a specific pipe, reading from that pipe
will no longer block and instead return 0

1) https://www.man7.org/linux/man-pages/man2/read.2.html EECS 678 13

https://www.man7.org/linux/man-pages/man2/read.2.html

write

• Write is a system call that is used to write to a file descriptor
• Declaration: ssize_t write(int fd, void *buf, size_t count);1

• Invocation:
char buf[n];

int numOfBytesWritten = write(fd, buf, sizeof(buf));

• Writing to pipes:
• If the read end of a pipe has been closed by all processes, writing to that pipe

will result in SIGPIPE signal and the process trying to write to that pipe will be
terminated

1) https://www.man7.org/linux/man-pages/man2/write.2.html EECS 678 14

https://www.man7.org/linux/man-pages/man2/write.2.html

Understanding Processes and IPC

through the Shell

EECS 678 15

16

Example Shell Commands (Redirections)

● Some common bash operators:

–foo < in.txt – redirect standard input of program foo to in.txt.

–foo > out.txt – redirect standard output of program foo to out.txt.

–foo >> out.txt – redirect standard output of program foo to be appended to the file out.txt.

–foo | bar – redirect standard output of program foo to be the standard input to program
bar.

● Bash is also a scripting programming language (complete with variables
and if and while statements) that can be used to script the OS.

17

Utility Programs

● Any Unix distribution comes with several utility programs for interacting with the
OS.

–grep – search for strings in a file

–find – find a particular file

–du – Determine the disk usage of files and directories

–ls – List files and their permissions

● Many, many more. Proficiency with these basic tools will make you a much more
effective developer on your platform.

● Unix provides a manual (accessible from the shell) that documents the use and
syntax of each core utility. e.g:

–man grep

18

finder.sh

first argument.

• xargs grep -c $2 – Search the set of files on standard input for the string given by the
second argument. -c says that instead of printing out each usage in each file, give me the
number of times $2 is used in each file.

• sort – Sort standard input and print the sorted order to standard output. -t : +1.0 -2.0 says
sort using the second column on each line (delimited by the ':' character) as a key. --
numeric says to sort numerically (as opposed to alphabetically). --reverse says sort in
reverse order.

• head – print only the first n lines of standard input. --lines=$3 lets us set the number of
lines with the third argument.

--numeric --reverse | head --lines=$3

• find $1 -name '*'.[h]–Find files with .h extensions under the directory given by the

find $1 -name '*'.[h] | xargs grep -c $2 | sort -t : +1.0 -2.0

19

How finder.sh Works in the Shell

● When the user types this command at a shell, the shell parses
the input, and issues system calls to create the processes and
set up the pipes between these processes.

● In this lab, we will implement what the shell would typically
perform when given a command like this.

–Although to save time, our implementation will only work for pipelines of
length 4 as opposed to arbitrarily long pipelines (as a shell would
handle).

20

Getting Started

● The first thing to notice after untarring the tar file is the Makefile:
–Notice the variables DIR, STR, and NUM_FILES and the command under the
'find' target.

–Test the command. In this lab's directory, do:

• bash> make find

● Should see the output as described two slides back.

● The goal of this lab is to write a program – finder.c – that produces the
same output as the finder.sh command.

21

finder.c

● As it is given, this program is a skeleton for a four stage
pipeline.

● All it currently does is start a process, which forks off four
children (which do nothing), waits for them to finish, and
exits.

22

finder.c (cont.)

● We want a program that forks off four children, sets up pipes
between these children, and executes the appropriate
command with each child:

main

grep sort headfind

23

Step 1 - Constructing the Pipeline

● Go ahead and try to setup the pipeline using the pipe() and dup2()
system calls.

● Remember to close() unused file descriptors for each process.

● You may want to experiment with pipes using the pipe.c program first.

● Try to connect the processes in pipe.c so that the file read in the first
process is written down a pipe which is read from in the second process.

24

Step 2 - Adding exec

● When you are confident your pipeline is working correctly, all that
is left is to tell each process to exec the appropriate binary (e.g.
find, grep, sort etc.)

● exec replaces the current process image with a new process image
specified by a binary file name and arguments.

● Once the image is replaced, you have no control over what the
process does (which is why it is recommended that you test the
pipeline well before this step).

25

Example

if (pid_1 == 0) {
/* First Child */
char cmdbuf[BSIZE];
bzero(cmdbuf, BSIZE);
sprintf(cmdbuf, "%s %s -name \'*\'.[ch]", FIND_EXEC, argv[1]);

/* set up pipes */
…

if ((execl(BASH_EXEC, BASH_EXEC, "-c", cmdbuf, (char *) 0)) < 0) {
fprintf(stderr, "\nError execing find. ERROR#%d\n", errno);
return EXIT_FAILURE;

}
}

26

Finishing Up

● After you have each completed your implementation,
compile the finder program and run the test code:

• bash> make test

● If the diff line does not produce an error, your
implementation is correct.

