
EECS 678 Memory Mapped I/O Lab 1

Memory Mapped I/O

Michael Jantz

Prasad Kulkarni

EECS 678 Memory Mapped I/O Lab 2

Introduction

●This lab discusses various techniques user level

programmers can use to control how their process' logical

address space can be manipulated to map to physical memory

and elements of the file system in Linux.

●It should help firm up your understanding of virtual memory in

that it will use the virtual memory subsystem to do file I/O

●Our tar file this week is slightly bigger than normal. Go ahead

and make the starter code for this lab:

bash> cd eecs678-mmio-lab/; make

EECS 678 Memory Mapped I/O Lab 3

Logical Address Space
●The loading and storing of data from disk and into memory is

essential to almost all user programs

●However, memory management can be complicated as

programmers have to manage concerns over concurrent access to a

shared resource and memory storage limitations

●For these reasons, many operating systems abstract main memory

into an extremely large, uniform array of storage, separating logical

memory as viewed by each user process from physical memory

●Today, we will look at some of the system calls Linux provides to

give application programmers simple and efficient access to their

process' logical address spaces.

EECS 678 Memory Mapped I/O Lab 4

read_write
●This program copies a file using the read and write system calls

we've already seen. It takes three command line arguments:

–Source File to copy

–Destination file to copy to

–Buffer size per read and write

●Recall read and write use a fixed size buffer to store the data read

from memory and to refer to before writing back to memory

●This program uses malloc to allocate memory for this buffer.

●When a process performs a malloc(n) the operating system

increases its logical address space by n bytes and returns a pointer

to the first byte in the (linear) address space

EECS 678 Memory Mapped I/O Lab 5

Running read_write
●To run read_write on the provided sample.ogg video with a buffer of

size 5 bytes, type:

-bash-3.2$./read_write sample.ogg copy.ogg 5

●This may take some time. You should verify the generated copy.ogg

is the same as the video sample.ogg. Run:

-bash-3.2$ totem copy.ogg

●sample.ogg is only a 12MB file. Copies of this size do not normally

take such a long time.

●The reason the operation took so long is that we only allowed our

process to allocate 5 additional bytes of memory to perform the

copy. For every iteration of the read / write loop in the program, only

5 bytes was written to memory.

EECS 678 Memory Mapped I/O Lab 6

A Faster read_write
●We can tweak the command line argument to see how the system reacts to allowing larger

buffer sizes.

●We can also use the Unix 'time' command to time how this process performs differently

when used with a different sized read / write buffer. time reports the total (real) time needed

to execute the program, the time spent executing in user mode, and the time spent

executing in system mode. It's resolution is milliseconds:

-bash-3.2$ time ./read_write sample.ogg copy.ogg 10

real 0m4.417s

user 0m0.383s

sys 0m2.949s

●After a few buffer size increases, you should see the speed of the copy no longer

increasing. This is because, as you increase the buffer size, the main copy loop does not

have to loop as often to copy the file. Eventually, however, the overhead of the read and

write system calls is no longer the copy operation's bottleneck.

●No matter how it is done, 12MB of file data will have to be read into memory, from disk, to

copy the file. A single disk read is orders of magnitude slower than a system call. Data must

also be written to the new file. Disk I/O eventually becomes the bottleneck.

EECS 678 Memory Mapped I/O Lab 7

Segmentation Faults Explained
●Now, let's switch to the memmap program.

●If you run the program in its current state, you will see:

-bash-3.2$./memmap sample.ogg copy.ogg

Segmentation fault

●Why is this happening? The program issues the instruction:

*dst = *src;

●dst and src are pointers initialized by their declaration to point to some location in memory.

The space for the dst and src pointers is that for local variables – on the stack. However, the

space pointed to by dst and src has not been allocated. In fact, they both point to NULL, or

0x0, a logical address which is designated as illegal on most systems.

●When a user process attempts to dereference a logical address (in C this is done by applying

the * operator to a pointer to a logical address) that is not in its address space, the kernel

sends the process a SIGSEGV signal to indicate it has performed an operation resulting in a

segmentation fault.

EECS 678 Memory Mapped I/O Lab 8

Copying in Memory
●In this lab, we will copy the sample.ogg file using only direct memory

operations. We will dereference a pointer to every byte in the source file

and copy the data into space reserved for the destination file.

●To avoid segmentation faults, we could create a memory buffer area for the

whole file using malloc, perform a small set of large or a large set of small

read operations to get the data into the buffer, then write this buffer to a file.

●However, Linux provides a way of creating a direct byte-to-byte mapping of

a file directly into your user process' logical address space. Copying data

from file to file can then be done copying it from one region of a programs

logical address space to another.

–The OS takes care of updating file contents on disk

●This approach is called memory mapping and is done using the mmap

system call.

EECS 678 Memory Mapped I/O Lab 9

mmap

●The mmap system call is described below:

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset);

–start – The address at which to create the mapping. If the value passed in is
NULL, the kernel will choose the address for you.

–prot – The desired memory protection of the mapping

–flags – Determines whether updates to the mapping are visible to other
processes mapping the same region, and whether updates are carried through to
the underlying file.

–The contents of the shared segment are initialized using length bytes starting at
offset in the file referred to by the file descriptor fd.

●On success, this call returns a pointer to the memory mapped area. In

the case of an error, it returns -1.

EECS 678 Memory Mapped I/O Lab 10

Preparing for the mmap
●There are a few preparations we need to make before mapping both the source

and destination files into regions of logical memory

●Most obviously, we see that mmap takes a size argument. We should find the size

of the input file before calling mmap to create a memory image of its contents

●We can use the fstat system call to obtain the size of an open file:

int fstat(int fd, struct stat *buf);

●This call stores several statistics about the open file corresponding to fd into the

stat structure pointed to by buf. The stat structure is on the following slide.

●For our purposes, we will use the st_size field in this structure as the length of the

file we wish to copy.

●For error checking purposes, you should capture the return value of this function,

which is 0 on success and -1 on failure, and call err_sys with an appropriate error

string if the fstat fails

EECS 678 Memory Mapped I/O Lab 11

struct stat
struct stat {

dev_t st_dev; /* ID of device containing file */

ino_t st_ino; /* inode number */

mode_t st_mode; /* protection */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device ID (if special file) */

off_t st_size; /* total size, in bytes */

blksize_t st_blksize; /* blocksize for filesystem I/O */

blkcnt_t st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last status change */

};

EECS 678 Memory Mapped I/O Lab 12

Allocating Destination File Space
●Less obviously, notice, that we have an open file descriptor to the

destination file, but, as of yet, this file descriptor does not

correspond to any file contents in blocks on the physical disk.

●If we map the destination file into memory before writing to that file,

we create a situation where we have allocated physical memory that

does not correspond to file contents of the destination file in

allocated space on the physical disk.

●In the current state, if the program writes to this mapped memory,

the operating system does not know where to store this data when

the memory image is written out to the destination file

●The result is an error which is sent to our process in the form of a

SIGBUS signal.

EECS 678 Memory Mapped I/O Lab 13

Allocating Destination File Space
●We can get around this by using file operations to force the allocation of space for the file on

the file system.

●We will do this by, first, seeking to the last possible byte we may want to write for our copy

operation, using the source file size we obtained earlier, and writing a dummy byte to this

location in the file. In effect, writing the last byte requires that all previous bytes exist.

●The lseek system call takes a file descriptor and moves its cursor to the position specified by

its arguments:

off_t lseek(int fd, off_t offset, int whence)

●fd is the file descriptor we wish to seek on, and offset is how far to seek in according to the

directive whence. You may use the (size-of-the-source-file – 1) for offset and the SEEK_SET

macro to simply set the cursor to an offset in the destination file corresponding to the size of

the source file.

●Once its cursor has been set, you can simply write a dummy byte to the file using the write

system call. This forces the operating system to allocate disk space for the entire file.

●Remember to check for error conditions on all your system calls

–lseek and write both return -1 on error

EECS 678 Memory Mapped I/O Lab 14

Doing the mmap
●Now, we can go ahead and perform the mmap for both our source and destination files. One

call to mmap will use the fdin FD to map the source file, the other will use the fdout FD to map

the destination file. Refer to slide 9 for the type and order of mmap arguments

●For both mmap calls we can use the following arguments:

–NULL for the start address to tell the OS to choose the address at which to create the mapping.

–MAP_SHARED for the flags argument to tell the OS to carry the changes to the mapping through to the underlying file.

–0 for the offset to tell the OS we want the mapping to start at the start of the file.

●Now, the file mapped using fdin should be mapped with only read access privilege

(PROT_READ), and the file mapped using fdout should be mapped with both read and write

access privileges (PROT_READ | PROT_WRITE).

●On success, this call returns a pointer to the memory mapped area. As with the other system

calls, mmap returns -1 on error.

EECS 678 Memory Mapped I/O Lab 15

Copying the File
●For this part of the lab, we leave it to you to determine how you wish

to copy the file now that you have memory mapped both the source

and destination files in your logical address space

●One possibility is to start at the pointer returned by mmap and copy

each byte of source memory into the destination memory one at a

time in a loop using pointer arithmetic

●Another is to use the memcpy system call. See the memcpy man

page for information on this system call.

EECS 678 Memory Mapped I/O Lab 16

Testing

●When you are through, you should test your implementation again

with the 'time' command.

–Also make sure your copied video plays as well

●You should note that this implementation is faster than the

read_write program with a small buffer, but about the same as

read_write with a larger buffer.

EECS 678 Memory Mapped I/O Lab 17

Conclusion
●Theoretically, the mmap solution should outperform the read / write solution:

–The read / write solution copies the contents of the source file (stored in a kernel-
space buffer of memory) to a user-space buffer before copying these contents back
to a kernel-space buffer corresponding to the destination file.

–The mmap solution avoids this additional copy by directly mapping the kernel-
space buffers allocated for the source and destination files directly to our user-level
process' virtual address space.

●However, both methods require that data on the physical disk first be pulled into

physical memory before it can be copied, and that the contents of the file must be

present in physical memory before it can be written out to disk.

●The overhead of performing these disk read/write operations is the main

performance bottleneck in many situations, including this one.

