
C for Python Programmer
EECS 678 Staff

Yuying Li

Compilers vs. Interpreters

Python: Uses an interpreter to execute code directly.

No separate compilation step, but compiled C code can run faster.

C: Uses a compiler to translate code into machine-native executable.

 Execution is a two-step process:

➔ Compile the program (gcc my_program.c)
➔ Run the executable (./a.out)

Makefile in C Projects

What is a Makefile?

➔ Purpose: Automates
the build process for C
projects, managing
compilation and linking.

➔ Why Use It: Simplifies
handling multiple
source files and
dependencies, making
projects easier to
manage.

Variables

Rules

Header Files in C

C: Header files in C are used to declare the interfaces of functions, macros, and
data types, allowing code to be shared across multiple source files.

➔ Content:
◆ Declares functions so they can be used across different .c files.
◆ Defines macros that can be reused.
◆ Declares structures, enums, and typedefs.

➔ Include:
◆ #include <header.h>: Used for system libraries.
◆ #include "header.h": Used for user-defined headers.

➔ Benefit: Enhances code organization and reusability.

Variable Declarations
Python: Variables are dynamically typed and do not require declarations.

C: Requires explicit variable declarations with type specification (e.g., double x;).

➔ Variables must be declared before use.
➔ Compiler checks for undeclared variables and catches misspellings.
➔ If the assigned value type differs from the declared type, the compiler will generate

an error.

int integer

char character

double double-precision floating-point number

_Bool A boolean type that can hold true or false (typically 0 or 1)

Whitespace

Python: Uses indentation and line breaks to define blocks and separate
statements.

C: Ignores most whitespace. Blocks are defined using “{ }” and statements are
terminated with “;”.

Note: Whitespace can still affect interpretation in certain cases.

(e.g., intmain vs. int main)

The printf() Function

C: Uses printf() to display output, similar to Python's print.

➔ Format Strings: Use “%” followed by a character to format output (e.g.,
“%d” for integers, “%f” for floats).

➔ Escape Characters: Use “\n” for newline, “\t” for tab, etc.
➔ Example: printf("# solns: %d\n", num_sol); prints formatted output.

Pointers

C: Pointers store memory addresses,
allowing direct access to variables and
memory.

➔ Declaration: int* p; declares a
pointer to an integer.

➔ Assignment: p = &x; stores the
address of x in p.

➔ Dereferencing: *p accesses the
value at the address stored in p

➔ Benefits: Enables dynamic
memory allocation and efficient
array handling.

Note: Be careful with memory management! Incorrect use of pointers can lead to memory leaks,
segmentation faults, or other issues.

Functions

C: All executable code must be inside functions, unlike Python where top-level
code can exist outside function.

Functions cannot be nested. (e.g., you cannot declare a function inside another
function).

➔ Main Function: The entry point of every C program is the main function,
which typically returns int.

➔ Custom Functions: Define specific tasks within a program.
◆ Function Types: Every function has a return type that must be specified (e.g., int, double,

void).
◆ Return Type: Specifies what type of value the function returns. Use void if the function doesn't

return a value.

Function Calls

Pass by Value: Function receives a copy of x and y.
Original values are unchanged.

➔ Syntax: result = add(x, y);

Pass by Reference (Pointers):

➔ Syntax: modify(&x);
➔ Effect: Function receives the address of x.

Changes affect the original x.

Accessing Struct Members:

➔ Dot (.) Operator: Used with struct variables.
◆ Example: variable.func.

➔ Arrow (->) Operator: Used with pointers to
structs.
◆ Example: pointer->func.

Structs (short for structures) group
different data types together under a
single name, allowing you to create
complex data structures.

Linked List

Definition: A linked list is a dynamic data structure consisting of nodes.

➔ Data: The actual value (e.g., an integer).
➔ Pointer: A reference (pointer) to the next node in the sequence.

How it Works:

➔ Head Node: The starting point of the list.
➔ Traversal: Move from one node to the next using the pointers until you reach a node where

the next pointer is NULL (the end of the list).
➔ Insertion/Deletion: Nodes can be easily inserted or removed without reallocating or

reorganizing the entire structure.
➔ Dynamic Size: Unlike arrays, linked lists can grow and shrink in size dynamically.

LinkedList.h

Functions:

➔ createNode: Create a new node
for the linked list with a given
integer value.

➔ insertAtEnd: Add a new node
with given data to the end of the
linked list.

➔ printList: Traverse and print all
the elements in the linked list.

➔ deleteList: Free all nodes in the
linked list to prevent memory
leaks.

ListQuestions.h

Task 1: Detecting Cycles in a Linked List

➔ Problem: If a node’s next pointer eventually points back to a previous node, creating
an infinite loop, a cycle exists.

➔ Approach: Two-Pointer Technique (Fast & Slow): Use two pointers, one moving faster
than the other. If they meet, a cycle is detected.

Task 2: Merging Two Sorted Linked Lists

➔ Problem: Merge two sorted linked lists into one sorted list without creating new nodes.
➔ Approach: 1) Compare nodes from both lists and link them in order. 2) Continue merging by

advancing pointers in the lists.

Outcome: Return the head of the newly merged list.

How to Test Your Code

Running the Tests:

➔ Compile the Code: Run make all in the terminal.
➔ Execute the Tests: Run ./runTests.

Check Results:

➔ If your implementation is correct, you should see Total Score: 100/100.
➔ This indicates that all test cases passed successfully.

Testing Process:

We have prepared 10 test cases located in the Tests folder, each test case is designed to
check different aspects of your linked list implementation, you can review the tests
individually to understand what each one is testing.

Helpful Resources

C programming primer (for Python programmers):

https://learnxinyminutes.com/docs/c/

https://www.cs.toronto.edu/~patitsas/cs190/c_for_python.html

Linked List in C:

https://www.geeksforgeeks.org/linked-list-in-c/

More Details of C:

https://www.geeksforgeeks.org/c-programming-language/?ref=shm

https://learnxinyminutes.com/docs/c/
https://www.cs.toronto.edu/~patitsas/cs190/c_for_python.html
https://www.geeksforgeeks.org/linked-list-in-c/
https://www.geeksforgeeks.org/c-programming-language/?ref=shm

Any Questions?

